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ABSTRACT
The abundance of user generated content on social networks pro-
vides the opportunity to build models that are able to accurately
and effectively extract, mine and predict users’ interests with the
hopes of enabling more effective user engagement, better quality
delivery of appropriate services and higher user satisfaction. While
traditional methods for building user profiles relied on AI-based
preference elicitation techniques that could have been considered to
be intrusive and undesirable by the users, more recent advances are
focused on a non-intrusive yet accurate way of determining users’
interests and preferences. In this tutorial, we cover five important
aspects related to the effective mining of user interests: (1) we in-
troduce the information sources that are used for extracting user
interests, (2) various types of user interest profiles that have been
proposed in the literature, (3) techniques that have been adopted
or proposed for mining user interests, (4) the scalability and re-
source requirements of the state of the art methods, and finally (5)
the evaluation methodologies that are adopted in the literature for
validating the appropriateness of the mined user interest profiles.
We also introduce existing challenges, open research question and
exciting opportunities for further work.

CCS CONCEPTS
• Information systems → Social networks; Information ex-
traction; • Human-centered computing → User models; So-
cial networks.
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1 INTRODUCTION
Mining user interests from user behavioral data is critical for appli-
cations such as online advertising. Based on user interests, service
providers such as advertisers, can significantly reduce service deliv-
ery costs by offering the most relevant products (e.g., ads) to their
customers. The challenge of accurately and efficiently identifying
user interests has been the subject of increasing attention in the
past several years. Early approaches were based on explicit input
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from individuals about their own interests. To avoid the extra bur-
den of manually filling in and maintaining interest profiles, most
methods in the past two decades have focused on the development
of techniques that can automatically and unobtrusively determine
users’ interests based on user behavioral data from data sources
such as browsing history, page visits, the links they click on, the
searches they perform and the topics they interact with [15].

With the emergence and growing popularity of social networks
such as blogging systems, wikis, social bookmarking, andmicroblog-
ging services, many users are extensively engaged in at least some of
these applications to express their feelings and views about a wide
variety of social events/topics as they happen in real time by com-
menting, tagging, joining, sharing, liking, and publishing posts [22].
This has made social networks an exciting and unique source of
information about users’ interests. The development of techniques
that can automatically model users’ interests from online social net-
works would be highly important and have the potential to improve
the quality of applications that work on a user modeling basis, such
as filtering Twitter streams [21], news recommendation [1] and
retweet prediction [13], among others.

In this tutorial, we comprehensively introduce different strate-
gies proposed in the literature, including our own work [4, 10, 11,
27, 29–33], for mining user interests from social networks with
respect to the following five perspectives:
(1) Information Sources: The type of information sources used for

extracting user interests from within social networks such as
textual content (comments, #tags), social network structure, and
images [4, 28]. Additionally, we review external background
knowledge sources such as semantic web resources and knowl-
edge graphs that have been incorporated by some researchers to
enhance the accuracy of user profiles [6, 30].

(2) Profile Types: Most of works in user interest mining from social
networks extract users’ explicit interests that are directly observ-
able from user content [2, 23, 24, 31]. However, given the increas-
ingly noticeable free-rider, some other techniques focus on pas-
sive users and extract their implicit interests by considering the
interaction patterns between users and topics [25, 28, 29]. There
is another line of work that is dedicated to predict users’ future
interests instead of modeling current interests of users [19, 30].

(3) Underlying Techniques: Previous methods have employed dif-
ferent techniques to build user profiles including neural em-
beddings [10, 16, 19], collaborative filtering [3, 5, 8, 18], topic
modeling [17, 18, 32], link prediction [7, 29, 32], regression [4,
14], graph-based methods [9, 31] and Semantic Web technolo-
gies [12, 20, 30]. We review the techniques that have been used
for identifying user interests and their different architectural
variations.

(4) Scalability and Resource Requirements: Scalability is fundamen-
tal to user interest mining to accommodate torrents of social
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content. To this end, we provide a comprehensive overview of
the speed-accuracy (efficiency-accuracy) trade-off when building
user interest profiles for existing techniques of the literature [26].

(5) Evaluation Methodology: Intrinsic vs. extrinsic evaluations are
twomain evaluation techniques, which have beenwidely adopted
in the literature. Intrinsic evaluation helps to assess the quality of
the constructed user interest profiles based on user studies [6, 20]
while extrinsic evaluations measure the quality of the user in-
terest profiles by looking at its impact on the effectiveness of
other applications such as news recommendation and retweet
prediction [31, 32]. We review how each of these evaluation
methodologies have been used in the literature.

2 CONTENT OVERVIEW
This tutorial presents a comprehensive survey of user interest min-
ing from online social networks and covers the following sections:

Background and Introduction to Theory of User Interest
Mining: The tutorial begins with a session about basics of user
interest mining and various online social networks. This includes
preliminaries, motivations, and highlights on research questions
to which user interest mining from online social networks would
provide an answer for. Then, we introduce different third-party
applications that can take advantage of user interest mining from
social network to improve the accuracy of their results.

Techniques and Methods in User Interest Mining from
Online Social Networks: Depending on the desirable type of user
interest profiles, i.e., explicit, implicit or future user interest profiles,
previous work have adopted different approaches for addressing the
problem. Within these three categories, we lay out the details and
provide a comparative analysis of existing methods in terms of their
representation power, flexibility, resource needs and scalability.

Evaluation Methodologies, Future Directions and Open
Challenges: In this session, we first elaborate on different re-
sources and two main approaches used in the literature to evaluate
user interest profiles, namely intrinsic vs extrinsic evaluation tech-
niques. Next, this session presents exciting open research questions
in the state-of-the-art for mining users’ interests from online so-
cial networks. Accurate information extraction from online social
networks poses unique challenges due to the special character-
istics of them. Social posts are rather short, noisy and informal
and they often do not provide sufficient contextual information
for identifying their semantics. This tutorial presents the open is-
sues that are important but have not been well addressed in recent
studies. We cover potential resources (e.g., Linked Open Data) and
techniques (e.g. Learning-to-Rank, deep learning architectures and
causal inference) that can be relevant for mining user interests.
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